Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Xianyonga; b; * | Wang, Qiana; b | Fan, Yunruic
Affiliations: [a] School of Mathematical Sciences, Sichuan Normal University, Chengdu, China | [b] Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu, China | [c] Department of General Education, Chengdu Agricultural College, Chengdu, China
Correspondence: [*] Corresponding author. Xianyong Zhang. E-mail: xianyongzh@sina.com.cn.
Abstract: Feature selection facilitates classification learning and can resort to uncertainty measurement of rough set theory. By fuzzy neighborhood rough sets, the fuzzy-neighborhood relative decision entropy (FNRDE) motivates a recent algorithm of feature selection, called AFNRDE. However, FNRDE has fusion defects for interaction priority and hierarchy deepening, and such fusion limitations can be resolved by operational commutativity; furthermore, subsequent AFNRDE has advancement space for effective recognition. For the measurement reinforcement, an improved measure (called IFNRDE) is proposed to pursue class-level priority fusion; for the algorithm promotion, the corresponding selection algorithm (called AIFNRDE) is designed to improve AFNRDE. Concretely, multiplication fusion of algebraic and informational measures is preferentially implemented at the class level, and the hierarchical summation generates classification-level IFNRDE. IFNRDE improves FNRDE, and its construction algorithm and granulation monotonicity are acquired. Then, IFNRDE motivates a heuristic algorithm of feature selection, i.e., AIFNRDE. Finally, relevant measures and algorithms are validated by table examples and data experiments, and new AIFNRDE outperforms current AFNRDE and relevant algorithms FSMRDE, FNRS, FNGRS for classification performances.
Keywords: Feature selection, fuzzy neighborhood rough set, uncertainty measure, relative decision entropy, hierarchical fusion
DOI: 10.3233/JIFS-223384
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9527-9544, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl