Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ledesma Roque, Diana Anahí | Kolesnikova, Olga | Menchaca Méndez, Ricardo; *
Affiliations: Centro de Investigación en Computación del Instituto Politécnico Nacional, México
Correspondence: [*] Corresponding author. Ricardo Menchaca Méndez, Centro de Investigación en Computación del Instituto Politécnico Nacional, México. E-mail:ric@cic.ipn.mx.
Abstract: This study addresses the issue of semantic similarity in sentences using the BERT model through various aggregation techniques, such as max-pooling, mean-pooling, and an LSTM network applied to the output of the BERT model. Subsequently, the linguistic interpretability of the BERT-Base transformer model is analyzed through the unsupervised learning approach, specifically through dimensionality reduction using autoencoders and clustering algorithms, utilizing the representation of the classification token CLS. The results highlight that the CLS classification token achieves better abstractions than the proposed methods. In terms of interpretability, it is observed that sequence length is relevant in the early layers, with a gradual decrease across the layers. Additionally, attention to semantic similarity is concentrated in the intermediate and upper layers, especially in layers 6, 8, 9, and 10. All these findings were obtained by addressing the semantic similarity task using the STS-Benchmark dataset.
Keywords: Linguistic interpretability, aggregation methods, unsupervised learning, attention mechanisms, token CLS
DOI: 10.3233/JIFS-219359
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl