Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing Applications
Guest editors: Valentina Emilia Balas
Article type: Research Article
Authors: Leghari, Mehwisha; b; * | Memon, Shahzada | Dhomeja, Lachhman Dasa | Jalbani, Akhtar Hussainb | Chandio, Asghar Alib
Affiliations: [a] A.H.S Bukhari, Faculty of Engineering and Technology, University of Sindh, Jamshoro, Pakistan | [b] Department of Information Technology, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
Correspondence: [*] Corresponding author. Mehwish Leghari, Department of Information Technology, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan. Tel.: +92 333 7034850; E-mail: legharimehwish@quest.edu.pk.
Abstract: Handwritten signature for the identification and authentication of an individual has been widely used in the biometric systems. Due to the intra-class and inter-class variabilities, signature verification has become one of the most challenging problem in the biometric technology. Furthermore, the offline handwritten signature can be forged by the skilled persons due to its static nature. Therefore, in this paper a deep learning-based method using convolutional neural network (CNN) for online signature verification has been developed. Different values of the convolutional kernels such as 1×1, 3×3 and 5×5 are used to extract the discriminative features at multi-scales. The features of the initial and middle layers of the CNN are combined to create more powerful features. An up-sampling method with bilinear interpolation has been used to add the features of convolutional layers with different spatial dimensions. Both the addition and concatenation methods have been used to aggregate the convolutional features. A convolutional transpose method is applied to increase the depth of the convolutional layers while performing an addition operation on the layers with different depths. Finally, the concatenated features are passed to the fully connected layers for high-level feature extraction and classification. To evaluate the performance of the proposed method, an android application was developed where; a custom database of 985 online signatures collected from 197 users has been created. The problem of inadequate training data for online signature verification has been addressed through the data augmentation method. The experimental results show that the deep aggregated convolutional feature representation method achieves an accuracy of 99.32% on the custom developed online signature database.
Keywords: Online signature verification, biometric signature verification, convolutional feature aggregation, deep learning based signature authentication, feature concatenation, convolutional neural network
DOI: 10.3233/JIFS-219300
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 2, pp. 2005-2013, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl