Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Sierra-Enriquez, Edgar E.a | Valdez-Rodríguez, José E.b | Felipe-Riveró, Edgardo M.b; * | Calvo, Hiramb
Affiliations: [a] Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional | [b] Centro de Investigación en Computación, Instituto Politécnico Nacional
Correspondence: [*] Corresponding author. Edgardo M. Felipe-Riveró, Centro de Investigación en Computación, Instituto Politécnico Nacional. E-mail: edgardo@cic.ipn.mx.
Abstract: In the medical area, the detection of invasive ductal carcinoma is the most common sub-type of all breast cancers; about 80% of all breast cancers are invasive ductal carcinomas. Detection of this type of cancer shows a great challenge for specialist doctors since the digital images of the sample must be analyzed by sections because the spatial dimensions of this kind of image are above 50k × 50k pixels; doing this operation manually takes long time to determine if the patient suffers this type of cancer. Time is essential for the patient because this cancer can invade quickly other parts of the body. Its name reaffirms this characteristic, with the term "invasive" forming part of its name. With the purpose of solving this task, we propose an automatic methodology consisting in improving the performance of a convolutional neural network that classifies images containing invasive ductal carcinoma cells by highlighting cancer cells using several preprocessing methods such as histogram stretching and contrast enhancement. In this way, characteristics of the sub-images are extracted from the panoramic sample and it is possible to learn to classify them in a better way.
Keywords: Invasive ductal carcinoma, histopathological images, convolutional neural networks, cancer classification
DOI: 10.3233/JIFS-219250
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4623-4631, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl