Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Lopez-Rincon, Omara | Starostenko, Olega; * | Lopez-Rincon, Alejandrob
Affiliations: [a] Department of Computing, Electronics, and Mechatronics, Universidad de las Americas Puebla, Cholula, Mexico | [b] Utrecht University Pharmaceutical Sciences Pharmacology, Netherland
Correspondence: [*] Corresponding author. Oleg Starostenko, Department of Computing, Electronics, and Mechatronics, Universidad de las Americas Puebla, Cholula, Mexico. E-mail: oleg.starostenko@udlap.mx.
Abstract: Algorithmic music composition has recently become an area of prestigious research in projects such as Google’s Magenta, Aiva, and Sony’s CSL Lab aiming to increase the composers’ tools for creativity. There are advances in systems for music feature extraction and generation of harmonies with short-time and long-time patterns of music style, genre, and motif. However, there are still challenges in the creation of poly-instrumental and polyphonic music, pieces become repetitive and sometimes these systems copy the original files. The main contribution of this paper is related to the improvement of generating new non-plagiary harmonic developments constructed from the symbolic abstraction from MIDI music non-labeled data with controlled selection of rhythmic features based on evolutionary techniques. Particularly, a novel approach for generating new music compositions by replacing existing harmony descriptors in a MIDI file with new harmonic features from another MIDI file selected by a genetic algorithm. This allows combining newly created harmony with a rhythm of another composition guaranteeing the adjustment of a new music piece to a distinctive genre with regularity and consistency. The performance of the proposed approach has been assessed using artificial intelligent computational tests, which assure goodness of the extracted features and shows its quality and competitiveness.
Keywords: Automatic music composition, music feature extraction and encoding, genetic algorithm, harmony recombination
DOI: 10.3233/JIFS-219231
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4411-4423, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl