Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ye, Xiang | He, Zihang | Li, Bohan | Li, Yong; *
Affiliations: Beijing University of Posts and Telecommunications
Correspondence: [*] Corresponding author. Yong Li, Beijing University of Posts and Telecommunications. E-mail: yli@bupt.edu.cn.
Abstract: Geometric invariant feature representation plays an indispensable role in the field of image processing and computer vision. Recently, convolution neural networks (CNNs) have witnessed a great research progress, however CNNs do not excel at dealing with geometrically transformed images. Existing methods enhancing the ability of CNNs learning invariant feature representation rely partly on data augmentation or have a relatively weak generalization ability. This paper proposes orientation adaptive kernels (OA kernels) and orientation adaptive max pooling (OA max pooling) that comprise a new topological structure, orientation adaptive neural networks (OACNNs). OA kernels output the orientation feature maps which encode the orientation information of images. OA max pooling max-pools the orientation feature maps by automatically rotating the pooling windows according to their orientation. OA kernels and OA max pooling together allow for the eight orientation response of images to be computed, and then the max orientation response is obtained, which is proved to be a robust rotation invariant feature representation. OACNNs are compared with state-of-the-art methods and consistently outperform them in various experiments. OACNNs demonstrate a better generalization ability, yielding a test error rate 3.14 on the rotated images but only trained on “up-right” images, which outperforms all state-of-the-art methods by a large margin.
Keywords: Orientation adaptive kernel, rotation invariance, image transformation, feature extraction
DOI: 10.3233/JIFS-213051
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5749-5758, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl