Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kumar, Arvind; * | Singh Sodhi, Sartaj
Affiliations: Computer Science, and Enginering USICT GGSIPU, Delhi
Correspondence: [*] Corresponding author. Arvind Kumar. E-mail: arvind.usict.134164@ipu.ac.in.
Abstract: A Neural Network is one of the techniques by which we classify data. In this paper, we have proposed an effectively stacked autoencoder with the help of a modified sigmoid activation function. We have made a two-layer stacked autoencoder with a modified sigmoid activation function. We have compared our autoencoder to the existing autoencoder technique. In the existing autoencoder technique, we generally use the logsigmoid activation function. But in multiple cases using this technique, we cannot achieve better results. In that case, we may use our technique for achieving better results. Our proposed autoencoder may achieve better results compared to this existing autoencoder technique. The reason behind this is that our modified sigmoid activation function gives more variations for different input values. We have tested our proposed autoencoder on the iris, glass, wine, ovarian, and digit image datasets for comparison propose. The existing autoencoder technique has achieved 96% accuracy on the iris, 91% accuracy on wine, 95.4% accuracy on ovarian, 96.3% accuracy on glass, and 98.7% accuracy on digit (image) dataset. Our proposed autoencoder has achieved 100% accuracy on the iris, wine, ovarian, and glass, and 99.4% accuracy on digit (image) datasets. For more verification of the effeteness of our proposed autoencoder, we have taken three more datasets. They are abalone, thyroid, and chemical datasets. Our proposed autoencoder has achieved 100% accuracy on the abalone and chemical, and 96% accuracy on thyroid datasets.
Keywords: Autoencoder, sigmoid activation function, logsigmoid, neural network, classification, stacked autoencoder
DOI: 10.3233/JIFS-212873
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 1, pp. 1-18, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl