Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karthika, A.a; * | Subramanian, R.b | Karthik, S.c
Affiliations: [a] Department of Electronics & Communication Engineering, SNS College of Technology, Coimbatore, Tamilnadu | [b] Department of Electrical & Electronics Engineering, SNS College of Technology, Coimbatore, Tamilnadu | [c] Department of Computer Science & Engineering, SNS College of Technology, Coimbatore, Tamilnadu
Correspondence: [*] Corresponding author. A. Karthika, Department of Electronics & Communication Engineering, SNS College of Technology, Coimbatore, Tamilnadu. E-mail: karthika1papa@gmail.com.
Abstract: Focal cortical dysplasia (FCD) is an inborn anomaly in brain growth and morphological deformation in lesions of the brain which induces focal seizures. Neurosurgical therapies were performed for the detection of FCD. Furthermore, it can be overcome through the presurgical evaluation of epilepsy. The surgical result is attained basically through the output of the presurgical output. In preprocessing the process of increasing true positives with the decrease in false negatives occurs which results in an effective outcome. MRI (Magnetic Resonance Imaging) outputs are efficient to predict the FCD lesions through T1- MPRAGE and T2- FLAIR efficient output can be obtained. In our proposed work we extract the S2 features through the testing of T1, T2 images. Using RNN-LSTM (Recurrent neural network-Long short-term memory) test images were trained and the FCD lesions were segmented. The output of our work is compared with the proposed work yields better results compared to the existing system such as artificial neural network (ANN), support vector machine (SVM), and convolution neural network (CNN). This approach obtained an accuracy rate of 0.195% (ANN), 0.20% (SVM), 0.14% (CNN), specificity rate of 0.23% (ANN), 0.15% (SVM), 0.13% (CNN) and sensitivity rate of 0.22% (ANN), 0.14% (SVM), 0.08% (CNN) respectively in comparison with RNN-LSTM.
Keywords: Focal cortical dysplasia, T1- MPRAGE and T2- FLAIR, S2 feature extraction, lesion segmentation, recurrent neural network
DOI: 10.3233/JIFS-212463
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6293-6306, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl