Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shao, Dangguoa; b; * | An, Qinga | Huang, Kuna | Xiang, Yana; b | Ma, Leia; b | Guo, Junjuna; b | Yin, Rundaa
Affiliations: [a] Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China | [b] Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technoloy, Kunming, China
Correspondence: [*] Corresponding author. Dangguo Shao. E-mail: huntersdg@126.com.
Abstract: The purpose of aspect-level sentiment analysis is to identify the contextual sentence expressions given by sentiment for some aspects. For previous works, many scholars have proved the importance of the interaction between aspects and contexts. However, most existing methods ignore or do not specifically capture the position information of the aspect targets in the sentence. Thus, we propose an aspect-level sentiment analysis based on joint aspect and position hierarchy attention mechanism network. At the same time, the model adopts a joint approach to make the model of the aspect features and the position features. On the one hand, this method clearly captures the interaction between aspect words and context when inputting word vector information. On the other hand, this method can enhance the importance of position information in the sentence and boost the information retrieval ability of the model. Additionally, the model utilizes a hierarchical attention mechanism to extract feature information and to differentiate sentiment towards, which is similar to filtering useless information again. Experiment on the SemEval 2014 dataset represent that our model achieves better performance on aspect-level sentiment classification.
Keywords: Aspect-level, position information, hierarchy attention mechanism, sentiment analysis, sentiment polarity
DOI: 10.3233/JIFS-211515
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2207-2218, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl