Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gunapriya, D.a; * | Muniraj, C.b | Lakshmi, K.c
Affiliations: [a] Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, India | [b] Department of Electrical and Electronics Engineering, Knowledge Institute of Technology, India | [c] Department of Electrical and Electronics Engineering, Sri Krishna College of Technology, India
Correspondence: [*] Corresponding author. D. Gunapriya, Assistant Professor, Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, India. E-mail: gunapriyadevarajan@gmail.com.
Abstract: The detection as well as analysis of faults in Induction Motor (IM) is prominent in the industrial process in recent decades, since it has been a demanding issue in industries to confirm the safe and reliable operations of IM. Though the electrical faults, mechanical faults and environmental faults cause damages in IM, as per Electric Power Research Institute (EPRI) statistical studies, the faults due to (i) rotor mass unbalance and (ii) rotor shaft bending substantially contribute 8-9% of the total motor fault. This present research work focuses on the issue of detecting and analysing the faults by studying the current and vibration data obtained from the three-phase squirrel cage IM under healthy and faulty conditions using the experimental workbench. It also depicts the development of a fault detection model for IM which comprises the integrated approach of Principal Component Analysis (PCA) and Fuzzy Interference System (FIS) and two level decision fuzzy measures. Besides, fuzzy integral data fusion technique has been used in this work for the improvement of diagnosing accuracy. The data acquired from the workbench system are first investigated through the PCA to extricate the appropriate features that provide the major information of collected data without reducing its dimensions. The projected data space using the principal components is non-deterministic for further synthesis process of fault classification. Hence, to classify the faults in IM, the obtained feature vectors from PCA are fed into FIS as an input and the classification performance is compared finally. The work experiment has been carried out under the healthy and different faulty conditions of motor and the proposed integrated approach is executed by using MATLAB.
Keywords: Fuzzy logic, fuzzy integral, fuzzy measure, induction motor faults, principal component analysis, current and vibration signals
DOI: 10.3233/JIFS-211124
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3265-3283, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl