Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ren, Shengbing; * | Zuo, Xing | Chen, Jun | Tan, Wenzhao
Affiliations: School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
Correspondence: [*] Corresponding author. Shengbing Ren, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China. E-mail: rsb@csu.edu.cn.
Abstract: The existing Software Fault Localization Frameworks (SFLF) based on program spectrum for estimation of statement suspiciousness have the problems that the feature type of the spectrum is single and the efficiency and precision of fault localization need to be improved. To solve these problems, a framework 2DSFLF proposed in this paper and used to evaluate the effectiveness of software fault localization techniques (SFL) in two-dimensional eigenvalues takes both dynamic and static features into account to construct the two-dimensional eigenvalues statement spectrum (2DSS). Firstly the statement dependency and test case coverage are extracted by the feature extraction of 2DSFLF. Subsequently these extracted features can be used to construct the statement spectrum and data flow spectrum which can be combined into the optimized spectrum 2DSS. Finally an estimator which takes Radial Basis Function (RBF) neural network and ridge regression as fault localization model is trained by 2DSS to predict the suspiciousness of statements to be faulty. Experiments on Siemens Suit show that 2DSFLF improves the efficiency and precision of software fault localization compared with existing techniques like BPNN, PPDG, Tarantula and so fourth.
Keywords: Fault localization framework, program spectrum, feature extraction, RBF neural network, ridge regression
DOI: 10.3233/JIFS-202931
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 2899-2914, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl