Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pan, Hongguang; * | Wen, Fan | Huang, Xiangdong | Lei, Xinyu | Yang, Xiaoling
Affiliations: College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an, P. R. China
Correspondence: [*] Corresponding author. Hongguang Pan, College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China. E-mail: hongguangpan@163.com.
Abstract: In the field of super-resolution image reconstruction, as a learning-based method, deep plug-and-play super-resolution (DPSR) algorithm can be used to find the blur kernel by using the existing blind deblurring methods. However, DPSR is not flexible enough in processing images with high- and low-frequency information. Considering a channel attention mechanism can distinguish low-frequency information and features in low-resolution images, in this paper, we firstly introduce this mechanism and design a new residual channel attention networks (RCAN); then the RCAN is adopted to replace deep feature extraction part in DPSR to achieve the adaptive adjustment of channel characteristics. Through four test experiments based on Set5, Set14, Urban100 and BSD100 datasets, we find that, under different blur kernels and different scale factors, the average peak signal to noise ratio (PSNR) and structural similarity (SSIM) values of our proposed method increase by 0.31dB and 0.55%, respectively; under different noise levels, the average PSNR and SSIM values increase by 0.26dB and 0.51%, respectively.
Keywords: image reconstruction, channel attention mechanism, residual channel attention networks, blur kernel
DOI: 10.3233/JIFS-202696
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 4069-4078, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl