Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ammar, E.; * | Al-Asfar, A.
Affiliations: Department of Mathematics, Faculty of Science, Tanta University, Egypt
Correspondence: [*] Corresponding author. Dr. E. Ammar, Ph.D, Department of Mathematics, Faculty of Science, Tanta University, Egypt. Tel.: +201200322171; E-mail: el-saeed.amar@science.tanta.edu.eg.
Abstract: In real conditions, the parameters of multi-objective nonlinear programming (MONLP) problem models can’t be determined exactly. Hence in this paper, we concerned with studying the uncertainty of MONLP problems. We propose algorithms to solve rough and fully-rough-interval multi-objective nonlinear programming (RIMONLP and FRIMONLP) problems, to determine optimal rough solutions value and rough decision variables, where all coefficients and decision variables in the objective functions and constraints are rough intervals (RIs). For the RIMONLP and FRIMONLP problems solving methodology are presented using the weighting method and slice-sum method with Kuhn-Tucker conditions, We will structure two nonlinear programming (NLP) problems. In the first one of this NLP problem, all of its variables and coefficients are the lower approximation (LAI) it’s RIs. The second NLP problems are upper approximation intervals (UAI) of RIs. Subsequently, both NLP problems are sliced into two crisp nonlinear problems. NLP is utilized because numerous real systems are inherently nonlinear. Also, rough intervals are so important for dealing with uncertainty and inaccurate data in decision-making (DM) problems. The suggested algorithms enable us to the optimal solutions in the largest range of possible solution. Finally, Illustrative examples of the results are given.
Keywords: Multi-objective nonlinear programming (MONLP), rough-interval (RI), Fully-rough-interval, Slice-sum method and Kuhn-Tucker (KT) conditions
DOI: 10.3233/JIFS-202586
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 4821-4835, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl