Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Shuganga | Wang, Rua | Zhang, Yuqia | Lu, Hanyua; * | Cai, Nannana | Yu, Zhaoxub
Affiliations: [a] School of management, Shanghai University, Shanghai, PR China | [b] Department of automation, East China University of Science and Technology, Shanghai, PR China
Correspondence: [*] Corresponding author. Hanyu Lu, School of management, Shanghai University, Shanghai, 200444, PR China. E-mail: luhanyuwill@126.com.
Abstract: Identifying potential social media influencers (SMIs) accurately can achieve a long-time and effective concept marketing at a lower cost, and then promote the development of the corporate brand in online communities. However, potential SMIs discrimination often faces the problem of insufficient available information of the long-term evolution of the network, and the existing discriminant methods based on link analysis fail to obtain more accurate results. To fill this gap, a consensus smart discriminant algorithm (CSDA) is proposed to identify the potential SMIs with the aid of attention concentration (AC) between users in a closed triadic structure. CSDA enriches and expands the users’ AC information by fusing multiple attention concentration indexes (ACIs) as well as filters the noise information caused by multi-index fusion through consensus among the indexes. Specifically, to begin with, to enrich the available long-term network evolution information, the unidirectional attention concentration indexes (UACIs) and the bidirectional attention concentration indexes (BACIs) are defined; next, the consensus attention concentration index (CACI) is selected according to the principle of minimum upper and lower bounds of link prediction bias to filter noise information; the potential SMI is determined by adaptively calculating CACI among the user to be identified, unconnected user group and their common neighbor. The validity and reliability of the proposed method are verified by the actual data of Twitter.
Keywords: Concept marketing, social media influencers, attention concentration index, consensus smart discriminant algorithm
DOI: 10.3233/JIFS-201809
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 317-329, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl