Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liang, Tao; * | Zhao, Qing | Shi, Huan
Affiliations: College of Artificial Intelligence, Hebei University of Technology, Tianjin, China
Correspondence: [*] Corresponding author. Tao Liang, College of Artificial Intelligence, Hebei University of Technology, Tianjin, China. E-mail: liangtao@hebut.edu.cn.
Abstract: Wind energy, a highly popular renewable clean energy, has been increasingly valued by the international community and been leaping forward. However, the original wind speed signal characterized by intermittent fluctuations impose heavy burdens on wind speed forecasting of wind farms. This study proposed a wind speed forecasting method by complying with a model integrating the Variational Mode Decomposition (VMD) and the Improved Multi-Objective Dragonfly Optimization Algorithm (IMODA). First, the VMD was adopted to decompose the original wind speed signal, as an attempt to obtain multiple sub-sequences (IMFs) exhibiting stable frequency domain. Second, to simplify the calculation, the sample entropy (SE) was adopted for the sequence recombination, and the respective recombined sub-sequence of the wind speed was forecasted by using four advanced neural networks. Lastly, the IMODA algorithm was adopted to fuse the forecasting results of the neural network, and the results of the optimal wind speed were forecasted. To verify the effectiveness and adaptability of the algorithm, the wind farm data in four different regions were forecasted. As indicated from the results, this algorithm could outperform other algorithms in the comprehensive forecasting accuracy and the model calculation time, and it could be effectively applied for the wind speed forecasting in wind farms.
Keywords: Wind speed forecasting, variational mode decomposition, IMODA, combined model
DOI: 10.3233/JIFS-201191
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 2845-2861, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl