Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Deepika, T.; * | Prakash, P. | Dhanya, N.M.
Affiliations: Department of Computer Science and Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Correspondence to: T. Deepika, Department of Computer Science and Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India E-mail: t_deepika@cb.students.amrita.edu.
Abstract: By leveraging the performance of small and medium-scale data centers (SMSDCs), which are involved in high-performance computing, data centers are central to the current modern industrial business world. Extensive enhancements in the SMSDC infrastructure comprise a diverse set of connected devices that disseminate resources to the end users. The high certainty workloads of end users and over resource provisioning result in high power consumption in SMSDCs, which are pivotal factors contributing to high carbon footprints from SMSDCs. The excessive emission of CO2 is higher in SMSDCs compared with that of hyperscale data centers (HSDCs). An exorbitant amount of electricity is utilized by 8.6 million data centers worldwide, and is expected to increase by up to 13% in 2030. The power requirement of an SMSDC domain is expected to be 5% of the global power production. However, the power consumption of SMSDCs changes annually. To aid SMSDCs, machine learning prediction is deployed. Literature review indicates that many studies have focused on the recurring issues of HSDCs rather than those of SMSDC. Herein, a regressive predictive analysis, i.e., multi-output random forest regressor, is proposed to forecast the resource usage and power utilization of virtual machines. These prediction results in diminishes the power utilization of SMSDC whilst reduces the CO2 emission from SMSDC. The obtained result shows that the proposed approach yields better predictions than other single-output prediction methods for future resource demand from end users.
Keywords: Cloud computing, virtual machine, power consumption prediction, machine learning
DOI: 10.3233/JIFS-200653
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 4731-4747, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl