Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gao, Chengrui | Liu, Feiqiang | Yan, Hua*;
Affiliations: Sichuan University, The College of Electronics Information and Engineering, Chengdu, China
Correspondence: [*] Corresponding author. Hua Yan, Sichuan University, The college of electronics information and engineering, Chengdu 610064, China. E-mail: yanhua@scu.edu.cn.
Abstract: Infrared and visible image fusion refers to the technology that merges the visual details of visible images and thermal feature information of infrared images; it has been extensively adopted in numerous image processing fields. In this study, a dual-tree complex wavelet transform (DTCWT) and convolutional sparse representation (CSR)-based image fusion method was proposed. In the proposed method, the infrared images and visible images were first decomposed by dual-tree complex wavelet transform to characterize their high-frequency bands and low-frequency band. Subsequently, the high-frequency bands were enhanced by guided filtering (GF), while the low-frequency band was merged through convolutional sparse representation and choose-max strategy. Lastly, the fused images were reconstructed by inverse DTCWT. In the experiment, the objective and subjective comparisons with other typical methods proved the advantage of the proposed method. To be specific, the results achieved using the proposed method were more consistent with the human vision system and contained more texture detail information.
Keywords: image fusion, dual-tree complex wavelet transform, convolutional sparse representation, guided filter
DOI: 10.3233/JIFS-200554
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 4617-4629, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl