Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mahmood, Tahira; * | Ur Rehman, Ubaida | Ali, Zeeshana | Mahmood, Tariqb
Affiliations: [a] Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan | [b] Department of Electronics Engineering, University of Engineering and Technology, TAXILA, Sub-Campus Chakwal
Correspondence: [*] Corresponding author. Tahir Mahmood, Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan. E-mail: tahirbakhat@iiu.edu.pk.
Abstract: Fuzzy set (FS) theory is one of the most important tool to deasl with complicated and difficult information in real-world. Now FS has many extensions and hesitant fuzzy set (HFS) is one of them. Further generalization of FS is complex fuzzy set (CFS), which contains only the membership grade, whose range is unit disc instead of [0, 1]. The aim of this paper is to present the idea of complex hesitant fuzzy set (CHFS) and to introduce its basic properties. Basically, CHFS is the combination of CFS and HFS to deal with two dimension information in a single set. Further, the vector similarity measures (VSMs) such as Jaccard similarity measures (JSMs), Dice similarity measures (DSMs) and Cosine similarity measures (CSMs) for CHFSs are discussed. The special cases of the proposed measures are also discussed. Then, the notion of complex hesitant fuzzy hybrid vector similarity measures are utilized in the environment of pattern recognition and medical diagnosis. Further, based on these distance measures, a decision-making method has been presented for finding the best alternative under the set of the feasible one. Illustrative examples from the field of pattern recognition as well as medical diagnosis have been taken to validate the approach. Finally, the comparison between proposed approaches with existing approaches are also discussed to find the reliability and proficiency of the elaborated measures for complex hesitant fuzzy elements.
Keywords: Complex fuzzy set, complex hesitant fuzzy sets, similarity measures, hybrid vector similarity measures
DOI: 10.3233/JIFS-200418
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 625-646, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl