Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Jeyanthi, R.a; * | Sahithi, Madugulaa | Sireesha, N.V.L.a | Srinivasan, Mangala Snehaa | Devanathan, Sriramb
Affiliations: [a] Department of Electronics and Communication Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India | [b] Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Corresponding author. R. Jeyanthi. E-mail: r_jeyanthi@blr.amrita.edu.
Abstract: In process industries, measurements usually contain errors due to the improper instrumental variation, physical leakages in process streams and nodes, and inaccurate recording/reporting. Thus, these measurements violate the laws of conservation, and do not conform to process constraints. Data reconciliation (DR) is used to resolve the difference between measurements and constraints. DR is also used in reducing the effect of random errors and more accurately estimating the true values. A multivariate technique that is used to obtain estimates of true values while preserving the most significant inherent variation is Principal Component Analysis (PCA). PCA is used to reduce the dimensionality of the data with minimum information loss. In this paper, two new DR techniques are proposed moving-average PCA (MA-PCA) and exponentially weighted moving average PCA (EWMA-PCA) to improve the performance of DR and obtain more accurate and consistent data. These DR techniques are compared based on RMSE. Further, these techniques are analyzed for different values of sample size, weighting factor, and variances.
Keywords: Data reconciliation, MA-PCA, EWMA-PCA
DOI: 10.3233/JIFS-189892
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5731-5736, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl