Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Kumar, Manisha; * | Kumar, Bhavneshb | Rani, Ashab
Affiliations: [a] Instrumentation and Control Engineering Division, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India | [b] Instrumentation and Control Engineering Department, Netaji Subhas University of Technology (formerly NSIT), New Delhi, India
Correspondence: [*] Corresponding author. Manish Kumar, Division of Instrumentation and Control Engineering, Netaji Subhas Institute of Technology, University of Delhi, New Delhi-110078, India. E-mail: manishkumar886488@gmail.com.
Abstract: The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.
Keywords: Loss minimization, torque estimation, adaptive neuro fuzzy inference system (ANFIS), electrical vehicle (EV)
DOI: 10.3233/JIFS-189885
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5653-5663, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl