Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Richa, a; * | Bedi, Punamb
Affiliations: [a] School of Computer Science and Engineering, VIT Chennai, Chennai, Tamil Nadu, India | [b] Department of Computer Science, University of Delhi, India
Correspondence: [*] Corresponding author. Richa, School of Computer Science and Engineering, VIT Chennai, Chennai, Tamil Nadu, India. E-mail: richasingh.bv@gmail.com.
Abstract: Recommender System (RS) is an information filtering approach that helps the overburdened user with information in his decision making process and suggests items which might be interesting to him. While presenting recommendation to the user, accuracy of the presented list is always a concern for the researchers. However, in recent years, the focus has now shifted to include the unexpectedness and novel items in the list along with accuracy of the recommended items. To increase the user acceptance, it is important to provide potentially interesting items which are not so obvious and different from the items that the end user has rated. In this work, we have proposed a model that generates serendipitous item recommendation and also takes care of accuracy as well as the sparsity issues. Literature suggests that there are various components that help to achieve the objective of serendipitous recommendations. In this paper, fuzzy inference based approach is used for the serendipity computation because the definitions of the components overlap. Moreover, to improve the accuracy and sparsity issues in the recommendation process, cross domain and trust based approaches are incorporated. A prototype of the system is developed for the tourism domain and the performance is measured using mean absolute error (MAE), root mean square error (RMSE), unexpectedness, precision, recall and F-measure.
Keywords: Recommender system, cross domain, serendipity, trust, fuzzy sets
DOI: 10.3233/JIFS-189872
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5511-5523, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl