Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Babu, Tinaa | Singh, Triptya; * | Gupta, Deepaa | Hameed, Shahinb
Affiliations: [a] Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India | [b] Department of Pathology, MVR Cancer Center and Research Institute, Poolacode, Kerala, India
Correspondence: [*] Corresponding author. Tripty Singh, Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India. E-mail: tripty_singh@blr.amrita.edu.
Abstract: Colon cancer is one of the highest cancer diagnosis mortality rates worldwide. However, relying on the expertise of pathologists is a demanding and time-consuming process for histopathological analysis. The automated diagnosis of colon cancer from biopsy examination played an important role for patients and prognosis. As conventional handcrafted feature extraction requires specialized experience to select realistic features, deep learning processes have been chosen as abstract high-level features may be extracted automatically. This paper presents the colon cancer detection system using transfer learning architectures to automatically extract high-level features from colon biopsy images for automated diagnosis of patients and prognosis. In this study, the image features are extracted from a pre-trained convolutional neural network (CNN) and used to train the Bayesian optimized Support Vector Machine classifier. Moreover, Alexnet, VGG-16, and Inception-V3 pre-trained neural networks were used to analyze the best network for colon cancer detection. Furthermore, the proposed framework is evaluated using four datasets: two are collected from Indian hospitals (with different magnifications 4X, 10X, 20X, and 40X) and the other two are public colon image datasets. Compared with the existing classifiers and methods using public datasets, the test results evaluated the Inception-V3 network with the accuracy range from 96.5% - 99% as best suited for the proposed framework.
Keywords: Transfer learning, features, CNN, colon cancer, classification
DOI: 10.3233/JIFS-189850
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5275-5286, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl