Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence and Advanced Manufacturing (AIAM 2020)
Guest editors: Shengzong Zhou
Article type: Research Article
Authors: Chang, Zhengyan; * | Zhang, Zhengwei | Deng, Qiang | Li, Zheren
Affiliations: School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
Correspondence: [*] Corresponding author. Zhengyan Chang, School of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, China. E-mail: changzhengyan@tyust.edu.cn.
Abstract: The artificial potential field method is usually applied to the path planning problem of driverless cars or mobile robots. For example, it has been applied for the obstacle avoidance problem of intelligent cars and the autonomous navigation system of storage robots. However, there have been few studies on its application to intelligent bridge cranes. The artificial potential field method has the advantages of being a simple algorithm with short operation times. However, it is also prone to problems of unreachable targets and local minima. Based on the analysis of the operating characteristics of bridge cranes, a two-dimensional intelligent running environment model of a bridge crane was constructed in MATLAB. According to the basic theory of the artificial potential field method, the double-layer artificial potential field method was deduced, and the path and track fuzzy processing method was proposed. These two methods were implemented in MATLAB simulations. The results showed that the improved artificial potential field method could avoid static obstacles efficiently.
Keywords: Artificial potential field, intelligent bridge crane, path planning, static environment
DOI: 10.3233/JIFS-189696
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 3, pp. 4369-4376, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl