Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the 9th International Multi-Conference on Engineering and Technology Innovation 2019 (IMETI2019)
Guest editors: Wen-Hsiang Hsieh
Article type: Research Article
Authors: Ding, Ing-Jr; * | Zheng, Nai-Wei | Hsieh, Meng-Chuan
Affiliations: Department of Electrical Engineering, National Formosa University, Yunlin, Taiwan
Correspondence: [*] Corresponding author. Ing-Jr Ding, Department of Electrical Engineering, National Formosa University, Yunlin 632, Taiwan. E-mail: eugen.ding@gmail.com.
Abstract: With fast developments of artificial intelligence, human behaviors can be further acknowledged by means of the biometric information of hand gesture actions made by the person. Such hand gesture information revealing the specific intention of the person will be undoubtedly a critical clue to cognize human behaviors. Furthermore, identity recognition of the hand gesture-making person is one of the most important technique issues in hand gesture recognition applications. This work explores hand gesture intention-based identity recognition where various deep learning recognition strategies are presented. The well-know image sensor of Leap Motion Controller (LMC) is employed in this work for acquisitions of active hand gesture data. This paper presents four different deep learning strategies for hand gesture intention-based identity recognition, all of which are based on the deep learning model of the visual geometry group (VGG)-type convolution neural network (CNN). The presented deep learning strategies to perform hand gesture intention-based identity recognition are typical VGG-16 CNN deep learning, dynamic time warping (DTW) classifications with VGG-16 CNN extracted deep learning features, DTW classifications by VGG-16 CNN extracted deep learning features with principal component analysis (PCA) data reduction, and PCA centroid classifications using VGG-16 CNN extracted deep learning features with PCA. Compared with traditional hand gesture recognition by classifications of only the geometrical space feature of LMC 3D-(x, y, z) data without any deep learning, most of presented VGG-CNN based deep learning approaches have more outstanding performances on recognition accuracy. In the situation of real-time recognition that considers both of recognition accuracy and computation time, PCA centroid classifications by VGG-16 CNN extracted deep learning features with PCA reduction, FC1-PCA and FC2-PCA features that are estimated from the first and the second fully connected (FC) layer of VGG-CNN respectively (i.e. FC1 and FC2 layers) and then significantly reduced the data dimension by PCA, apparently performs best among all presented deep learning strategies.
Keywords: Human behavior cognition, hand gesture action, hand gesture intention-based identity recognition, LMC sensor, VGG-CNN deep learning feature
DOI: 10.3233/JIFS-189598
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7775-7788, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl