Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Kun, Xua; * | Wang, Zhilianga | Zhou, Ziangb | Qi, Wangc
Affiliations: [a] School of Computer & Communication Engineering, University of Science and Technology Beijing, Beijing, China | [b] School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, China | [c] School of Network Engineering, Zhoukou Normal University, ZhouKou, Henan, China
Correspondence: [*] Corresponding author. Xu Kun, University of Science and Technology Beijing, E-mail: xukunedu18@126.com.
Abstract: For industrial production, the traditional manual on-site monitoring method is far from meeting production needs, so it is imperative to establish a remote monitoring system for equipment. Based on machine learning algorithms, this paper combines artificial intelligence technology and Internet of Things technology to build an efficient, fast, and accurate industrial equipment monitoring system. Moreover, in view of the characteristics of the diverse types of equipment, scattered layout, and many parameters in the manufacturing equipment as well as the complexity of the high temperature, high pressure, and chemical environment in which the equipment is located, this study designs and implements a remote monitoring and data analysis system for industrial equipment based on the Internet of Things. In addition, based on the application scenarios of the actual aeronautical weather floating platform test platform, this study combines the platform prototype system to design and implement a set of strong real-time communication test platform based on the Windows operating system. The test results show that the industrial Internet of Things system based on machine learning and artificial intelligence technology constructed in this paper has certain practicality.
Keywords: Machine learning, artificial intelligence, industry, internet of things
DOI: 10.3233/JIFS-189252
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2601-2611, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl