Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Huang, Zhaokuna; b; * | Liu, Guanjuna
Affiliations: [a] Capital University of Economics and Business, Beijing, China | [b] Henan University of Economics and Law, Zhengzhou, Henan, China
Correspondence: [*] Corresponding author. Zhaokun Huang, Capital University of Economics and Business, Beijing, China. E-mail: huangzhaokun12345@163.com.
Abstract: The fundamental solution to the problems of college students’ employment is to encourage college students to start their own businesses. Only by using entrepreneurship to promote employment can the real solution of China’s higher education employment problems be truly solved. Aiming at the current situation of college students’ entrepreneurship and employment, this paper builds a model system suitable for college students’ employment and entrepreneurship forecast and guidance through artificial intelligence algorithms and fuzzy logic models. The diversity-enhanced employment recommendation system developed in this paper uses the MVC three-tier architecture. Moreover, the diversity-enhanced employment recommendation system designed in this paper provides two recommendation methods: individual diversity optimization and overall diversity optimization, which takes into account the relationship between students’ personal interests and employment work. In addition, the system uses the basic idea of user-based collaborative filtering. Finally, this paper designs a control experiment to analyze the performance of this research model. The research shows that the entrepreneurship employment forecast and guidance model constructed in this paper has a certain effect.
Keywords: Artificial intelligence, fuzzy logic, college student employment, entrepreneurship, model
DOI: 10.3233/JIFS-189247
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2541-2552, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl