Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Cai, Yuanyuan; * | Zhao, Tingting
Affiliations: Qinggong College, North China University of Science and Technology, Tangshan, China
Correspondence: [*] Corresponding author. Yuanyuan Cai, Qinggong College, North China University of Science and Technology, Tangshan, China. E-mail: yycai86@126.com.
Abstract: In remote intelligent teaching, the facial expression features can be recorded in time through facial recognition, which is convenient for teachers to judge the learning status of students in time and helps teachers to change teaching strategies in a timely manner. Based on this, this study applies machine learning and virtual reality technology to distance classroom teaching. Moreover, this study uses different channels to automatically learn global and local features related to facial expression recognition tasks. In addition, this study integrates the soft attention mechanism into the proposed model so that the model automatically learns the feature maps that are more important for facial expression recognition and the salient regions within the feature maps. At the same time, this study performs weighted fusion on the features extracted from different branches, and uses the fused features to re-recognize student features. Finally, this study analyzes the results of this paper through control experiments. The research results show that the algorithm proposed in this paper has good performance and can be applied to the distance teaching system.
Keywords: Machine learning, virtual reality, distance teaching, classroom performance
DOI: 10.3233/JIFS-189215
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2157-2167, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl