Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Latif, Ghazanfara; * | Alghazo, Jaafara | Maheswar, R.b | Vijayakumar, V.c | Butt, Mohsind
Affiliations: [a] College of Computer Engineering and Sciences, Prince Mohammad bin Fahd University, Saudi Arabia | [b] Dean – Research (Assistant) & School of EEE, VIT Bhopal University, India | [c] Cloud Computing Consultant, MIT Square, UK | [d] College of Applied and Supporting Studies, King Fahd University of Petroleum and Minerals, Saudi Arabia
Correspondence: [*] Corresponding author. Ghazanfar Latif, College of Computer Engineering and Sciences, Prince Mohammad bin Fahd University, Saudi Arabia. E-mail: glatif@pmu.edu.sa.
Abstract: The agriculture industry is of great importance in many countries and plays a considerable role in the national budget. Also, there is an increased interest in plantation and its effect on the environment. With vast areas suitable for farming, countries are always encouraging farmers through various programs to increase national farming production. However, the vast areas and large farms make it difficult for farmers and workers to continually monitor these broad areas to protect the plants from diseases and various weather conditions. A new concept dubbed Precision Farming has recently surfaced in which the latest technologies play an integral role in the farming process. In this paper, we propose a SMART Drone system equipped with high precision cameras, high computing power with proposed image processing methodologies, and connectivity for precision farming. The SMART system will automatically monitor vast farming areas with precision, identify infected plants, decide on the chemical and exact amount to spray. Besides, the system is connected to the cloud server for sending the images so that the cloud system can generate reports, including prediction on crop yield. The system is equipped with a user-friendly Human Computer Interface (HCI) for communication with the farm base. This multidrone system can process vast areas of farmland daily. The Image processing technique proposed in this paper is a modified ResNet architecture. The system is compared with deep CNN architecture and other machine learning based systems. The ResNet architecture achieves the highest average accuracy of 99.78% on a dataset consisting of 70,295 leaf images for 26 different diseases of 14 plants. The results obtained were compared with the CNN results applied in this paper and other similar techniques in previous literature. The comparisons indicate that the proposed ResNet architecture performs better compared to other similar techniques.
Keywords: Automatic plant identification, residual networks, cognitive vision drone, deep learning, automatic spraying, Convolutional Neural Networks (CNN), smart devices, plant diseases.
DOI: 10.3233/JIFS-189132
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8103-8114, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl