Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Rawat, Anuja; * | Jha, S.K.b | Kumar, Bhavneshb | Mohan, Vijayc
Affiliations: [a] Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India | [b] Netaji Subhas University of Technology (Formerly NSIT), New Delhi, India | [c] Banasthali Vidyapith, Rajasthan, India
Correspondence: [*] Corresponding author. Anuj Rawat, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India. E-mail: anujrawat92@gmail.com.
Abstract: This paper presents a fractional order nonlinear Proportional Integral Derivative (FONPID) controller to efficiently achieve the Maximum Power Point Tracking (MPPT) in Photovoltaic (PV) systems working under rapidly varying solar intensity and the temperature. In this paper, comparisons have been made among different techniques in respect of the extent of energy extracted from the photovoltaic (PV) system using MATLAB platforms. Gains of the proposed FONPID controllers are optimally tuned using a meta-heuristic based Elitist Teaching Learning Based Optimization (ETLBO) algorithm. The performance assessment of the FONPID controller is made in terms of efficiency, settling time, rise time and ripple. The ETLBO tuned FONPID controller outperforms the other controller such as PID, Nonlinear PID (NPID), Fractional order PID (FOPID) and perturb and observe (P & O) technique. Therefore, in view of the meticulous investigation it is inferred that the proposed FONPID controller is an emerging MPPT technique with highest tracking efficiency and negligible ripple.
Keywords: Fractional order nonlinear proportional-integral derivative (FONPID), maximum power point tracking (MPPT), elitist teaching learning based optimization (ETLBO)
DOI: 10.3233/JIFS-179748
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6703-6713, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl