Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Fuzzy Systems for Medical Image Analysis
Guest editors: Weiping Zhang
Article type: Research Article
Authors: Zhang, Lea; b; * | Wang, Jinsonga | An, Zhiyonga
Affiliations: [a] Department of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin, China | [b] Department of Equipment Engineering, Shenyang Ligong University, Shenyang, China
Correspondence: [*] Corresponding author. Le Zhang, E-mail: zhangle_cust@126.com.
Abstract: The purpose of image segmentation is to select the target region from the existing image, which is the core technology for image understanding, description and analysis. When faced with some complicated problems, the image segmentation effect of the traditional method is often unsatisfactory. As a branch of the swarm intelligence optimization algorithm, Particle Swarm Optimization (PSO) provides a new power and direction for the development of image segmentation. However, the algorithm has a large probability of loss of particle diversity in the late stage, which makes the algorithm converge prematurely. Therefore, the purpose of this paper is to improve the problem existing in the PSO algorithm and apply the improved algorithm in image segmentation. In this paper, the whole population of PSO algorithm is divided into multiple sub-populations and co-evolution. The mutation operation from the genetic algorithm is introduced at the same time. The worst sub-population is mutated according to the mutation probability. The larger inertia factor is selected to speed the particles. Update, and then carry out simulation experiments on some classical test functions. Finally, combined with the improved PSO algorithm and fuzzy C-means clustering algorithm (FCM), the fuzzy clustering validity index is introduced, and the blood cell image is segmented by the algorithm. The experimental results show that the algorithm can find a reasonable number of cluster center segmentation categories and efficiently perform adaptive segmentation of images.
Keywords: Fractional particle swarm, maximum entropy, c-means clustering algorithm, image segmentation
DOI: 10.3233/JIFS-179580
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 3575-3584, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl