Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent, Smart and Scalable Cyber-Physical Systems
Guest editors: V. Vijayakumar, V. Subramaniyaswamy, Jemal Abawajy and Longzhi Yang
Article type: Research Article
Authors: Tan, Yaoa | Shum, Hubert P. H.a | Chao, Feib | Vijayakumar, V.c | Yang, Longzhia; *
Affiliations: [a] Department of Computer and Information Sciences, Newcastle upon Tyne, NE1 8ST, UK | [b] Department of Cognitive Science, School of Information Science and Engineering, Xiamen University, China | [c] School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, India
Correspondence: [*] Corresponding author. Longzhi Yang, Department of Computer and Information Sciences, Newcastle upon Tyne, NE1 8ST, UK. Tel: +44 191 243 7697 E-mail: longzhi.yang@northumbria.ac.uk.
Abstract: Fuzzy inference systems have been successfully applied to many real-world applications. Traditional fuzzy inference systems are only applicable to problems with dense rule bases covering the entire problem domains, whilst fuzzy rule interpolation (FRI) works with sparse rule bases that do not cover certain inputs. Thanks to its ability to work with a rule base with less number of rules, FRI approaches have been utilised as a means to reduce system complexity for complex fuzzy models. This is implemented by removing the rules that can be approximated by their neighbours. Most of the existing fuzzy rule base generation and simplification approaches only target dense rule bases for traditional fuzzy inference systems. This paper proposes a new sparse fuzzy rule base generation method to support FRI. In particular, this approach uses curvature values to identify important rules that cannot be accurately approximated by their neighbouring ones for initialising a compact rule base. The initialised rule base is then optimised using an optimisation algorithm by fine-tuning the membership functions of the involved fuzzy sets. Experiments with a simulation model and a real-world application demonstrate the working principle and the actual performance of the proposed system, with results comparable to the traditional methods using rule bases with more rules.
Keywords: Fuzzy inference, fuzzy interpolation, sparse rule base generation, curvature
DOI: 10.3233/JIFS-169978
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 4201-4214, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl