Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Jeena, R.S.a; * | Sukesh Kumar, A.b | Mahadevan, K.c
Affiliations: [a] Department of Electronics and Communication, Research Scholar, College of Engineering Trivandrum, Kerala | [b] Department of Electronics and Communication, College of Engineering Trivandrum, Kerala | [c] Department of Ophthalmology, Sree Gokulam Medical College and Research Foundation, Trivandrum, Kerala
Correspondence: [*] Corresponding author. R.S. Jeena, Department of Electronics and Communication, Research Scholar, College of Engineering Trivandrum, Kerala. E-mail: jeena_rs@yahoo.com.
Abstract: Stroke is a cerebrovascular disease which is one of the significant causes of adult impairment. Research shows that retinal fundus images carry vital information for the prediction of various cardiovascular diseases like Stroke. This work investigates a multi-texture description for the computer aided diagnosis of Stroke from retinal fundus images. Texture of the retinal background is analyzed, thereby eliminating the need for segmentation. Gabor Filter (GF), Local Binary Pattern (LBP) and Histogram of Oriented gradients (HOG) are the texture descriptors implemented in this work. The texture descriptors are applied to the second Eigen channel obtained by Principal Component Analysis (PCA). Extracted features are concatenated to form a multi-texture representation and dimensionality reduction is done by ReliefF feature selection method. The compact feature vector is given to Naïve Bayes classifier and performance metrics are evaluated. We have evaluated the performance of individual feature descriptors and multiple feature descriptors in retinal fundus images for stroke diagnosis. Multi-texture description outperforms individual texture descriptors by an accuracy of 95.1 %.
Keywords: Stroke, Gabor filter, local binary pattern, histogram of oriented gradients, principal component analysis, ReliefF
DOI: 10.3233/JIFS-169914
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 3, pp. 2025-2032, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl