Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Recent Advances in Machine Learning and Soft Computing
Guest editors: Srikanta Patnaik
Article type: Research Article
Authors: Petinrin, Olutomilayo Olayemia | Saeed, Faisalb; c; *
Affiliations: [a] Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia | [b] College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia | [c] Department of Information Systems, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
Correspondence: [*] Corresponding author. Faisal Saeed. fsaeed@taibahu.edu.sa.
Abstract: The current rise in the amount of data generated has necessitated the use of machine learning in the drug discovery process to increase productivity. It is therefore important to predict molecular compounds which are biologically active and capable of drug-target interaction. Various machine learning methods have been used in predicting bioactive molecular compounds in order to deal with the large volume of data being generated. This study investigates the Majority Voting ensemble method using different combinations of 5 commonly-used machine learning algorithms, including Support Vector Machine, Decision Tree, Naïve Bayes, k-Nearest Neighbor, and Random Forest on three chemical datasets DS1, DS2, and DS3 which consist of structurally heterogeneous and homogeneous molecules and are commonly used in other studies. The results show that Majority Voting has a better performance, based on all the evaluation metrics used, compared to each of the machine learning algorithms as individual classifiers. It also shows the Majority Voting ensemble method as effective in the prediction of both heterogeneous and homogeneous bioactive molecular compounds, using statistical evaluation.
Keywords: Bioactivity prediction, chemoinformatics, drug discovery, ensemble classification, majority voting
DOI: 10.3233/JIFS-169596
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 1, pp. 383-392, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl