Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering
Guest editors: David Pinto, Vivek Kumar Singh, Aline Villavicencio, Philipp Mayr-Schlegel and Efstathios Stamatatos
Article type: Research Article
Authors: Banerjee, Somnatha; * | Naskar, Sudipa | Rosso, Paolob | Bandyopadhyay, Sivajia
Affiliations: [a] Department of Computer Science and Engineering, Jadavpur University, India | [b] PRHLT Research Center, Universitat Politècnica de València, Spain
Correspondence: [*] Corresponding author. Somnath Banerjee, Department of Computer Science and Engineering, Jadavpur University, India. sb.cse.ju@gmail.com.
Abstract: Before the advent of the Internet era, code-mixing was mainly used in the spoken form. However, with the recent popular informal networking platforms such as Facebook, Twitter, Instagram, etc., in social media, code-mixing is being used more and more in written form. User-generated social media content is becoming an increasingly important resource in applied linguistics. Recent trends in social media usage have led to a proliferation of studies on social media content. Multilingual social media users often write native language content in non-native script (cross-script). Recently Banerjee et al. [9] introduced the code-mixed cross-script question answering research problem and reported that the ever increasing social media content could serve as a potential digital resource for less-computerized languages to build question answering systems. Question classification is a core task in question answering in which questions are assigned a class or a number of classes which denote the expected answer type(s). In this research work, we address the question classification task as part of the code-mixed cross-script question answering research problem. We combine deep learning framework with feature engineering to address the question classification task and enhance the state-of-the-art question classification accuracy by over 4% for code-mixed cross-script questions.
Keywords: Question answering, code-mixing, cross-scripting, question classification, deep learning, social media content
DOI: 10.3233/JIFS-169481
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 5, pp. 2959-2969, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl