Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Vidyadharan, Divya S.a; * | Thampi, Sabu M.b
Affiliations: [a] Department of Computer Science and Engineering, College of Engineering-Trivandrum, LBS Centre for Science and Technology, Kerala, India | [b] Indian Institute of Information Technology and Management, Kerala, India
Correspondence: [*] Corresponding author. Divya S. Vidyadharan, Department of Computer Science and Engineering, College of Engineering, Trivandrum, Kerala, India. Tel.: +91 9895528264; E-mail: divya.s.vidyadharan@ieee.org.
Abstract: Detecting forged digital image has been an active research area in recent times. Tampering introduces artifacts within images that differentiate tampered images from authentic images. Forgery detection techniques try to identify these artifacts by analyzing differences in the texture properties of the image. In this paper, we propose a multi-texture description based method to detect tampering. Different texture descriptors considered are Local Binary Pattern, Local Phase Quantization, Binary Statistical Image Features and Binary Gabor Pattern. The method captures subtle texture variations at different scales and orientation using Steerable Pyramid Transform (SPT) decomposition of image. The different texture descriptors extracted from each subband image after SPT decomposition is combined to form the multi-texture representation. Then, ReliefF feature selection method is applied on this high dimensional multi-texture representation to generate a compact representation. This compact multi-texture representation is classified using Random Forest classifier. We have evaluated the performance of individual texture descriptors and multiple textures in detecting image forgery. Experimental results show that the compact multi-texture description has improved detection accuracy.
Keywords: Image forgery detection, multi-texture description, image tampering detection
DOI: 10.3233/JIFS-169261
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 3177-3188, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl