Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Rajarajeswari, PL.a; * | Karthikeyan, N.K.b
Affiliations: [a] Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nadu, India | [b] Department of Information Technology, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India
Correspondence: [*] Corresponding author. P.L. Rajarajeswari, Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore-641042, Tamil Nadu, India. Tel.: +91 9442606125/+91 7402600156; E-mail: pl.rajarajeswari@skct.edu.in.
Abstract: The lifetime of a Wireless Sensor Network (WSN) depends on the efficiency of the Cluster Head (CH) selection techniques that address most of the significant issues related to network management. The existing energy based CH selection mechanisms consider that all the participating sensors are trustworthy. Conversely, the trust-based CH selection schemes assume that the sensor nodes are energy efficient. But, these assumptions of energy factor or trust assessment made by the CH selection mechanisms may not be true and the Residual Energy (RE) of the sensors may not be the sole factor to identify an effective CH in a WSN. Hence, this paper presents hybrid integrated energy and trust assessment based forecasting model known as Hyper-geometric Energy Factor based Semi-Markov Prediction Mechanism (HEFSPM) for effective CH election so as to improve the lifetime of the network. From the simulation results, it is inferred that HEFSPM is superior in improving the lifetime of the network to a maximum extent of 22% than the existing CH election mechanisms considered for investigation.
Keywords: Semi-markov process, Cluster Head, Hyper-geometric distribution, energy, trust assessment, prediction probability
DOI: 10.3233/JIFS-169254
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 3111-3120, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl