Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kalanat, Nasrin | Shamsinejadbabaki, Pirooz | Saraee, Mohamad
Affiliations: The Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran | The School of Computing, Science and Engineering, University of Salford-Manchester, Manchester, UK
Note: [] Corresponding author. Nasrin Kalanat, The Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran. Tel.: +98 9133186117; Fax: + 98 2173225322; E-mail: n.kalanat@ec.iut.ac.ir
Abstract: Data mining techniques are often confined to the delivery of frequent patterns and stop short of suggesting how to act on these patterns for business decision-making. They require human experts to post-process the discovered patterns manually. Therefore a significant need exists for techniques and tools with the ability to assist users in analyzing a large number of patterns to find usable knowledge. Action mining is one of these techniques which intelligently and automatically suggests some changes in the state of an object with the aim of gaining some profit in the corresponding domain. Up to now little research has been done in this field; in all cases continuous-valued data is handled by discretizing the associated attributes in advance or during the learning process. One inherent disadvantage in these methods is that using this sharp behavior can result in missing the optimal action. To overcome this problem this paper presents a method based on fuzzy set theory. In this paper, we concentrate on the fuzzy set based approach for the enhancement of Yang's method and present an algorithm that suggests actions which will decrease the degree to which a certain object belongs to an undesired status and increase the degree to which it belongs to a desired one. Our algorithm takes into account the fuzzy cost of actions, and further, it attempts to maximize the fuzzy net profit. The contribution of the work is in taking the output from fuzzy decision trees, and producing novel, actionable knowledge through automatic fuzzy post-processing. The performance of the proposed algorithm is compared with Yang's method using several real-life datasets taken from the UCI Machine Learning Repository. Experimental results show that the proposed algorithm outperforms Yang's method not only in finding more actions but also in finding actions with more fuzzy net profit.
Keywords: Actionable knowledge discovery, fuzzy action mining, fuzzy decision tree, cost-effective action
DOI: 10.3233/IFS-141357
Journal: Journal of Intelligent & Fuzzy Systems, vol. 28, no. 2, pp. 757-765, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl