Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Evolutionary computation in bioinformatics
Article type: Research Article
Authors: Chen, Xiujuan | Li, Yong | Harrison, Robert | Zhang, Yan-Qing
Affiliations: Department of Computer Science, Georgia State University, P.O. Box 3994, Atlanta, GA 30302-3994, USA
Note: [] Corresponding author. E-mail: xchen8@gsu.edu
Abstract: Classification of biomedical data faces a special challenge because of the characteristics of the data: too few data examples with too many features. How to improve the classification performance or the generalization ability of a classifier in the biomedical domain becomes one of the active research areas. One approach is to build a fusion model to combine multiple classifiers together and result in a combined classifier which can achieve a better performance than any of its composing individual classifiers. In this paper, we propose a SVM classifier fusion model to combine multiple SVMs by applying the knowledge of fuzzy logic and genetic algorithms. The fuzzy logic system (FLS) is constructed based on SVM accuracies and distances of data examples to SVM hyperplanes in SVM feature spaces. A genetic algorithm (GA) is used to tune the fuzzy membership functions (MFs) in the FLS and determine the optimal fuzzy fusion model. We have applied the proposed model to two biomedical data: colon tumor data and ovarian cancer data. Our experiment shows that multiple SVM classifiers complement each other well in the proposed fusion model and the ensemble achieves a better, more robust and more reliable performance than individual composing SVMs.
Keywords: Fuzzy logic, evolutionary computation, genetic algorithms, bioinformatics, medical informatics, support vector machines, ensembles, classification
Journal: Journal of Intelligent & Fuzzy Systems, vol. 18, no. 6, pp. 527-541, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl