Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Oh, Sung-Kwun | Pedrycz, Witold; | Park, Keon-Jun
Affiliations: Department of Electrical Engineering, The University of Suwon, San 2-2, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea | Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada | Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
Note: [] Corresponding author. Tel.: +1 780 492 4661; Fax: +1 780 492 1811; E-mail: pedrycz@ece.ualberta.ca
Abstract: In this study, we introduce a new category of fuzzy inference systems based on data (information) granulation and show their applications to the identification of complex and usually nonlinear systems. Information granules are treated as collections of objects (data, in particular) brought together by the criteria of proximity, similarity, or functionality. The formal framework of information granulation along with the information granules themselves become an important design feature of fuzzy models, which in essence are geared towards capturing relationship between information granules rather than plain numeric data. The key characteristics of experimental data being used in the construction of the fuzzy model are carefully reflected by fuzzy rules formed therein. Information granulation realized with the aid of Hard C-Means (HCM) clustering helps determine the initial values of the parameters of the fuzzy models. This in particular concerns such important components of the rules as the initial apexes of the membership functions standing in the premise part of the fuzzy rules and the initial values of the polynomial functions present in their consequence part. The initial values of the parameters are tuned effectively with the aid of the genetic algorithms (GAs) and the least square method (LSM). An aggregate objective function is constructed in order to strike a sound balance between the approximation and generalization capabilities of the fuzzy model. The model is evaluated with the use of numerical experimentation and contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.
Keywords: Information Granulation (IG), Fuzzy Inference System (FIS), Genetic Algorithms (GAs), Hard C-Means (HCM) clustering, least square method, design procedure
Journal: Journal of Intelligent & Fuzzy Systems, vol. 18, no. 1, pp. 31-41, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl