Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bethuel, Fabrice | Ghidaglia, Jean-Michel;
Affiliations: Laboratoire d'Analyse Numérique, Université Paris-Sud, Département de Mathématiques, Bâtiment 425, 91405 Orsay Cedex, France | Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan et CNRS, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
Note: [] Correspondence to: J.-M. Ghidaglia, Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan et CNRS, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France.
Abstract: In this work we show that any sequence uε of smooth solutions to the steady incompressible two-dimensional Euler equation in a bounded domain Ω, which converges weakly in L2(Ω) as ε goes to zero, converges to a weak solution of this equation provided curl uε remains bounded in L1(Ω).
DOI: 10.3233/ASY-1994-8305
Journal: Asymptotic Analysis, vol. 8, no. 3, pp. 277-291, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl