Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Khenissy, Saïma
Affiliations: Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis cedex, Tunisie E‐mail: saima.khenissy@insat.rnu.tn
Abstract: We consider the minimization of the Dirichlet integral ∫Ω|∇u|2 with the constraint ∫Ω(1−|u|2)2≤λ, for maps u∈H1(Ω;$\mathbb{R} ^{2})$, where Ω⊂$\mathbb{R} ^{2}$ is a smooth, bounded and simply connected domain, u=g on ∂Ω with g :∂Ω→S1 unit circle in $\mathbb{R} ^{2}$, and λ is a positive small parameter. Denoting by d the topological degree of g, we study the asymptotic behavior of a minimizer uλ when λ goes to zero, for d=0 and d≠0. When d=0, we show the convergence of uλ in various norms to a smooth harmonic map u* :Ω→S1. When d≠0 (d>0) we show that uλ converges to a smooth harmonic map u0 :Ω\{a1,a2,…,ad}→S1, where a1,a2,…,ad are the vortices where the energy of a minimizer ∫Ω|∇uλ|2 concentrates, when λ→0.
Journal: Asymptotic Analysis, vol. 38, no. 3-4, pp. 241-291, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl