Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bidaut‐Véron, Marie‐Françoise; | García‐Huidobro, Marta | Yarur, Cecilia
Affiliations: Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, Parc Grandmont, 37200 Tours, France E‐mail: veronmf@univ‐tours.fr | Departamento de Matemáticas, Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile E‐mail: mgarcia@mat.puc.cl | Departamento de Matematica y C.C., Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile E‐mail: cyarur@fermat.usach.cl
Note: [] Corresponding author.
Abstract: We consider the semilinear parabolic system with absorption terms in a bounded domain Ω of $\mathbb{R}^{N}$ \[\left\{\begin{array}{l@{\quad}l}u_{t}-\Delta u+\vert v\vert ^{p}\vert u\vert ^{k-1}u=0,&\hbox{in }\varOmega\times(0,\infty),\\v_{t}-\Delta v+\vert u\vert ^{q}\vert v\vert ^{\ell -1}v=0,&\hbox{in }\varOmega\times(0,\infty),\\u(0)=u_{0},\quad v(0)=v_{0},&\hbox{in }\varOmega,\end{array}\right.\] where p,q>0 and k,ℓ≥0, with Dirichlet or Neuman conditions on $\curpartial\varOmega\times(0,\infty)$. We study the existence and uniqueness of the Cauchy problem when the initial data are L1 functions or bounded measures. We find invariant regions when u0, v0 are nonnegative, and give sufficient conditions for positivity or extinction in finite time.
Journal: Asymptotic Analysis, vol. 36, no. 3-4, pp. 241-283, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl