Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shmarev, Sergeya; * | Simsen, Jacsonb | Stefanello Simsen, Marizab | Primo, Marcos Roberto T.c
Affiliations: [a] Departamento de Matemáticas, Universidad de Oviedo, c/Calvo Sotelo, s/n, 33007, Oviedo, Spain. E-mail: shmarev@uniovi.es | [b] Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá, MG, Brasil. E-mails: jacson@unifei.edu.br, mariza@unifei.edu.br | [c] Departamento de Matemática, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brasil. E-mail: mrtprimo@uem.br
Correspondence: [*] Corresponding author. E-mail: shmarev@uniovi.es.
Abstract: We study the homogeneous Dirichlet problem for the class of nonlinear parabolic equations with variable nonlinearity ut−div(D(x)|∇u|p(x)−2∇u)=f(x,t,u)−A(x)|u|q(x)−2u in the cylinder Ω×(0,T) with given nonnegative weights D(x), A(x), measurable bounded exponents p(x)∈[p−,p+], q(x)∈[q−,q+] and a globally Lipschitz function f(x,t,u). Sufficient conditions of existence and uniqueness of weak and strong solutions are derived. We find conditions on the exponents p(x), q(x) which guarantee that the associated semigroup has a compact global attractor in L2(Ω). It is shown that in case the exponents p(x) and q(x) do not meet the sufficient conditions of existence of a nontrivial global attractor and ‖u(0)‖L2(Ω) is sufficiently small, then every solution with bounded ‖u(t)‖L2(Ω)2 either vanishes in a finite time, or decays exponentially as t→∞.
Keywords: Nonlinear parabolic equation, variable nonlinearity, global attractors
DOI: 10.3233/ASY-181486
Journal: Asymptotic Analysis, vol. 111, no. 1, pp. 43-68, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl