Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Figueiredo, Giovany M.a | Molica Bisci, Giovannib | Servadei, Raffaellac; *
Affiliations: [a] Faculdade de Matemática-ICEN, Universidade Federal do Pará, Belém, Brazil | [b] Dipartimento PAU, Università ‘Mediterranea’ di Reggio Calabria, Reggio Calabria, Italy | [c] Dipartimento di Scienze di Base e Fondamenti, Università degli Studi di Urbino ‘Carlo Bo’, Urbino (Pesaro e Urbino), Italy
Correspondence: [*] Corresponding author: Raffaella Servadei, Dipartimento di Scienze di Base e Fondamenti, Università degli Studi di Urbino ‘Carlo Bo’, Piazza della Repubblica 13, 61029 Urbino (Pesaro e Urbino), Italy. E-mail: raffaella.servadei@uniurb.it.
Abstract: In this paper we study a highly nonlocal problem involving a fractional operator combined with a Kirchhoff-type coefficient. The latter is allowed to vanish at the origin (degenerate case). Precisely, we consider the following nonlocal problem −M(∥u∥X02)LKu=f(x,u)(∫Ω(∫0u(x)f(x,τ)dτ)dx)rin Ω,u=0in Rn∖Ω, where r⩾0, s∈(0,1), Ω is an open bounded subset of Rn, n>2s, with continuous boundary, f:Ω‾×R→R and M:[0,+∞)→[0,+∞) are functions verifying suitable conditions and LK is the integrodifferential operator defined as follows LKu(x):=∫Rn(u(x+y)+u(x−y)−2u(x))K(y)dy,x∈Rn, where the kernel K satisfies some natural conditions. By working in the fractional Sobolev space X0, which encodes Dirichlet homogeneous boundary conditions, and exploiting the genus theory introduced by Krasnoselskii, we derive the existence of infinitely many weak solutions for this problem.
Keywords: Kirchhoff-type equations, fractional Laplacian, nonlocal problems, variational methods, critical point theory, Krasnoselskii’s genus
DOI: 10.3233/ASY-151316
Journal: Asymptotic Analysis, vol. 94, no. 3-4, pp. 347-361, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl