Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Baraket, Sami
Affiliations: CMLA, ENS de Cachan, URA 1611, 61, avenue du Président Wilson, 94235 Cachan Cedex, France
Abstract: We study here the Ginzburg-Landau functional on a Riemannian surface S endowed with an arbitrary metric Eε(u)=½∫𝒮||∇u||2+1/(4ε2)∫𝒮(|u|2−1)2, u∈H1(S,C), where ε∈]0,+∞[. We study the asymptotic behaviour of the critical points for Eε as ε→0. We define a renormalized energy which allows to characterize the position of the singularities at the limit.
DOI: 10.3233/ASY-1996-13303
Journal: Asymptotic Analysis, vol. 13, no. 3, pp. 277-317, 1996
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl