Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Corrêa, Francisco Julio S.A.a; * | Carvalho, Marcos L.b | Goncalves, J.V.A.b | Silva, Kaye O.c
Affiliations: [a] Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, Brazil. E-mail: fjsacorrea@gmail.com | [b] Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, Brazil. E-mails: marcos_leandro_carvalho@ufg.br, goncalvesjva@ufg.br | [c] Núcleo de Estatística, Matemática e Matemática Aplicada, Instituto Federal Goiano, Urutaí, Brazil. E-mail: kayeoliveira@hotmail.com
Correspondence: [*] Corresponding author: Francisco Julio S.A. Corrêa, Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-900 Campina Grande, PB, Brazil. E-mail: fjsacorrea@gmail.com.
Abstract: We study existence of multiple positive solutions for the nonlinear eigenvalue problem −div(ϕ(|∇u|)∇u)=λf(u) in Ω, u=0 on ∂Ω , where Ω⊂RN is a bounded domain with smooth boundary ∂Ω , ϕ:(0,∞)→(0,∞) is a suitable C1 -function, λ>0 is a parameter and f:[0,∞)→R is a sign-changing continuous function. We show existence of a finite number of solutions in the case f changes sign a finite number of times and existence of infinitely many solutions in the case f changes sign an infinite number of times. We employ variational arguments, regularity results, a strong maximum principle by Pucci and Serrin and a general result on lower and upper solutions. Our research was motivated by the work of Hess for the case of the Laplacian and Loc and Schmitt for the case of the p-Laplacian and we were able to extend the major results by Loc and Schmitt.
Keywords: weak solutions, multiplicity, elliptic equations
DOI: 10.3233/ASY-141278
Journal: Asymptotic Analysis, vol. 93, no. 1-2, pp. 1-20, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl