Purchase individual online access for 1 year to this journal.
Price: EUR 90.00
Impact Factor 2024: 1
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of
Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The aim of biorheological research is to determine and characterize the dynamics of physiological processes at all levels of organization. Manuscripts should report original theoretical and/or experimental research promoting the scientific and technological advances in a broad field that ranges from the rheology of macromolecules and macromolecular arrays to cell, tissue and organ rheology. In all these areas, the interrelationships of rheological properties of the systems or materials investigated and their structural and functional aspects are stressed.
The scope of papers solicited by
Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.
Biorheology invites papers in which such 'molecular biorheological' aspects, whether in animal or plant systems, are examined and discussed. While we emphasize the biorheology of physiological function in organs and systems, the biorheology of disease is of equal interest. Biorheological analyses of pathological processes and their clinical implications are encouraged, including basic clinical research on hemodynamics and hemorheology.
In keeping with the rapidly developing fields of mechanobiology and regenerative medicine,
Biorheology aims to include studies of the rheological aspects of these fields by focusing on the dynamics of mechanical stress formation and the response of biological materials at the molecular and cellular level resulting from fluid-solid interactions. With increasing focus on new applications of nanotechnology to biological systems, rheological studies of the behavior of biological materials in therapeutic or diagnostic medical devices operating at the micro and nano scales are most welcome.
Abstract: Biofluids as concentrated suspensions exibit (at fixed shear rate γ ˙ ) a steady shear viscosity η which critically depends on (i) the volume fraction of particles ϕ , and (ii) the ability the particles have to form more or less loose structural units (flocs, aggregates or parts of network). The latter can be quantified by some effective packing volume fraction ϕ p which reflects the actual compacity of structural units. A special η –ϕ relationships which involves such a packing fraction will be discussed. Changes of structural units as shear rate…γ ˙ (or shear stress σ ) varies lead to ϕ p = ϕ p ( γ ˙ ) i.e. to non-newtonian viscosity. This shear-thinning behaviour is believed to result from some dynamical equilibrium between formation and destruction of structural units, in the presence of both brownian motions of particles and the shear stresses the suspending fluid exerts on them. A (simple) rate equation (from reaction kinetics) gives a quantitative description of ϕ p -dependences in γ ˙ and time t. Under steady conditions, the present approach is capable not only to model shear-thinning behaviour but also plastic and shear thickening (dilatant) ones. Time variations under transient shear rate (i.e. thixotropy) can be described with ϕ p (t) deduced from the same rate equation. Extension to visco-elastic behaviour has been obtained using a Maxwell-model with instantaneous values of viscosity and elasticity which both are functionals of the structural variable ϕ p ( t , γ ˙ ) .
Show more
Abstract: The relationship between stress and strain is the rheological equation of state. In the case of sophisticated systems such as biological tissue, this is rarely a simple relationship. The relationship is seen to be even more complex when it is recalled that in most living tissues, the tissue is not in chemical equilibrium, but is at best in some controlled steady state. At worst, it is undergoing major fluctuations or transitions because the chemical reactions or fluxes are altering the system. It is shown, in particular, that in addition to the changes in composition, the effective rheological relaxation times of…the system are shortened due to contributions deriving from the reaction rate constants. These and other points are illustrated by considering a process of irreversible monomolecular degradation of a large macromolecular species.
Show more
Keywords: Kinetorheology, Chemorheology, Chemical Change, Degradation, Aging
DOI: 10.3233/BIR-1984-21404
Citation: Biorheology,
vol. 21, no. 4, pp. 437-443, 1984
Abstract: A mathematical model is developed to elucidate microhemorheological factors of the oxygen transport between blood and tissue. A two-fluids model is introduced for capillary blood flow, including the non-equilibrium and relative motion between red blood cell (RBC) and plasma. A capillary-tissue unit is devised to describe the oxygen supply to tissue from a couple of capillaries with symmetric antiparallel input and output. Non-equilibrium flows are examined numerically on the basis of the model for various geometrical and dynamical parameters such capillary hematocrit, RBC velocity and flux. It is found that both RBC flux and capillary hematocrit have important influences…on the oxygen transfer to tissue. Especially under low capillary hematocrit flow, the lowest oxygen pressure within tissue may appear at the maximal difusional distance from the capillary between arterial and venous side.
Show more
Abstract: The aggregation of red blood cells may be analyzed as an interaction of an adhesive surface energy and the elastic stored energy which results from deformation of the cell. The adhesive surface energy is the work required to separate a unit adhered area and is the resultant of adhesive forces due to the bridging molecules that bind the cells together and the electrostatic repulsion due to surface charge. The elastic strain energy in the case of the red blood is associated with the membrane elasticity only since the interior of the cell is liquid. The membrane elasticity is due both…to bending stiffness and shear. The area expansion is small and may be neglected. These assumptions allow realistic computation of red cell shapes in rouleaux. The disaggregation of rouleaux requires an external force which must overcome the adhesive energy and also supply additional elastic energy of deformation. Depending on the geometry, the initial effect of elastic energy may tend to aid disaggregation. In a shear flow, the stresses on a suspended rouleau alternately tend to compress and to disaggregate the cells if they are free to rotate. This introduces a time dependence so that viscous effects due to the viscosity of the cell membrane, the cell cytoplasm and the external fluid may play a role in determining whether disaggregation proceeds to completion or not.
Show more
Abstract: On the basis of a recently developed biophysical model of cell-cell interaction, including electrostatic, electrodynamic, steric and bonding/bridging interaction energies the influence of different fixed charge (dissociated groups of the glycocalyx) density distributions in red blood cell (REC) glycocalyces on the total free interaction energy was investigated. An analytical equation of electrostatic free energy on the basis of the linear Poisson-Boltzmann approach taking into account arbitrary distributions of fixed glycocalyx charges was obtained and corresponding free electrostatic energies of three example distributions were calculated. The electrodynamic, steric and bonding/bridging energies were computed as usual. It was shown that the free…energy as a function of interaction distances strongly depends on the charge distribution and, correspondingly, the “weight” of this energy term in the total free interaction energy balance equation. Generally, it can be stated that as more charges are assumed to be fixed in the outer layer of REC glycocalyx as more important becomes the electrostatic energy in contrast to the remaining three terms.
Show more
Keywords: red blood cells, glycocalyx, surface structure, total interaction energy, aggregation
DOI: 10.3233/BIR-1984-21407
Citation: Biorheology,
vol. 21, no. 4, pp. 477-492, 1984
Abstract: When experimental tumours are inoculated into a host animal, the tumour growth depends, among other things, on its vascular supply. This vascular supply has been shown to be initiated by substances released by the tumour tissue, and vascular sprouting towards implanted tumour substances has been extensively demonstrated in nonvascular tissue. Most tissues, however, already contain a vascular supply sufficient for their own needs. In such conditions, the host vascular system is probably incorporated into the tumour without much vascular sprouting. It is well known that, as a tumour grows larger, the center tends to become ischaemic and necrotic. It is…not clear why the tumour vascularity does not respond to this development with reactive vascular proliferation, but increased interstitial tissue pressure and impaired fluid transport may be implicated.
Show more
Abstract: Different observations on the reactivity of tumor vessels to vasoactive drugs have suggested a decreased, a similar or an increased reactivity to vasoactive stimuli in the vascular bed of tumors as compared to normal tissues. No adrenergic innervation of newly developed tumor vessels has been found, while preexisting normal vessels incorporated during tumor growth may retain some innervation. In transplantable rat tumors, contractile cells, including smooth muscle cells, have been seen in tumor vessels. From recent experimental studies, it was concluded that the tumor’s vascular bed is probably in a state of maximal dilatation and therefore sensitive to vasoconstriction, but…less sensitive to pharmacological dilatation. These observations may correspond to regional tumor hypoxia and progressive development of tumor necrosis during tumor growth. The results of experimental tumor studies might question the reliability of diagnostic and therapeutic procedures in clinical oncology, which are based on differences in the reactivity to vasoactive drugs between normal and malignant tissues.
Show more
Abstract: In malignant tumors, spontaneous arteriolar vasomotion disappeared already during earliest tumor growth (tumor weight less than 200 mg) suggesting that arterioles supplying a malignant tumor with blood are maximally dilated from the very beginning of tumor growth. As a result, the viscosity of blood becomes a limiting factor of tissue perfusion. To evaluate the effects of isovolemic hemodilution in a malignant tumor, a transparent chamber model was used in conjunction with a subcutaneously growing amelanotic melanoma of the hamster. Quantitative intravital microscopy (video image analysis) and a platinum multiwire electrode were utilized to study the tumor microcirculation. Isovolemic hemodilution was…performed by exchange of blood vs. Dextran 60 to lower the systemic hematocrit to 30% in 21 animals. Capillary flow increased significantly and improved tissue pO2 on the tumor’s surface without any change in capillary density. Since tumor growth was accelerated after hemodilution, these data suggest to combine with hemodilution other treatment modalities to improve blood-mediated tumor therapy.
Show more
Abstract: Experiments are performed to study the influence of local hemodilution on tumor blood flow, oxygen availability in tumor tissue and O2 consumption of cancer cells. The results obtained clearly show that hemodilution in isolated tumor perfusion can distinctly improve nutritive blood flow through solid tumors. This can be utilized to enhance pharmacokinetics of antitumor drugs. Due to the improved metabolic status, the pharmacodynamics of some antitumor drugs should also be enhanced. To achieve a maximum improvement of the O2 supply to the tumor, hematocrit values should not be decreased below 0.20.
Abstract: Differences in blood perfusion rates between tumors and normal tissue can be utilized to selectively heat many solid tumors. Blood flow in normal tissues is considerably increased at temperatures commonly applied during localized hyperthermia. In contrast, tumor blood flow may respond to localized heat typically in two different blood flow patterns: Flow may either decrease continuously with increasing exposure time and/or temperature or flow may exhibit a transient increase followed by a decline. A decrease in blood flow at high thermal doses can be observed in most of the tumors, whereas an increase in flow at low thermal doses seems…to occur less frequently. The inhibition of blood flow at high thermal doses may lead to physiological changes in the microenvironment of the cancer cells that increase the cell killing effect of hyperthermia. Flow increases at low thermal doses can enhance the efficiency of other treatment modalities, such as irradiation or the administration of antiproliferate drugs.
Show more
Abstract: Single vessel responses to hyperthermia were studied in tumor and normal tissues using a transparent access window chamber. Rates of heating ⩽ .68°C/minute preserved relatively better vascular function in normal than tumor tissue. A rate of heating of 1.0°C/minute lowered normal tissue stasis temperatures so they were no different from tumor. Cooling to 30°C prior to heating slowed normal arteriolar flows to < 5% of 38°C controls. Heating resulted in increased flow in those vessels, but maximum flows never exceeded 5% of flows achieved in similar vessels which were not cooled first. The implications of this work are that rate…of heating and cooling prior to heating can alter normal tissue vascular response to heat in a way that could prove deleterious to maintaining efficient vascular function in that tissue relative to tumor.
Show more
Keywords: Microcirculation, Vascular stasis, Heating rate, Tumor, Normal tissue
DOI: 10.3233/BIR-1984-21413
Citation: Biorheology,
vol. 21, no. 4, pp. 539-558, 1984
Abstract: The evidence for a hemodynamic involvement and possible mechanisms by which hemodynamic-related events could influence the arterial wall, and in particular the vascular endothelium, are reviewed and used to speculate on the role of fluid mechanics in atherogenesis and specifically in lesion localization. The evidence presented suggests that it is vascular geometry, and the way it influences the local detailed flow properties, which is the primary determinant of a hemodynamic effect on the arterial wall and in the initiation of atherosclerosis.
Abstract: In addition to biochemical factors, hydromechanical influences are responsible for atherogenesis and deposits of blood platelets at bends and bifurcations of human arteries. Hence the flow patterns were simulated in a true-to-scale three-dimensional bifurcation of a human renal artery model and of an arteria femoralis with Newtonian and non-Newtonian blood like fluid. Investigations were made with steady and pulsatile flow. The velocity profiles (at physiological Re-numbers) were measured after the bifurcations with a laser-Doppler-anemometer. In previous works Newtonian fluids were used to investigate the flow in bends and bifurcations of rigid and elastic simplified models. In this paper,…emphasis is placed on the difference between rigid and elastic models and also Newtonian and non Newtonian flow behavior. Differences between Newtonian and non Newtonian fluids may especially be expected to occur after branches where the flow has local strong convective elements such as in reverse zones and flow separation points.
Show more
Abstract: The relationship between blood flow and the localization of thrombosis and atherosclerosis in vivo was investigated using the approach and techniques of microrheology. The flow patterns and wall-adhesion of platelets were studied in the captive annular vortex formed at a sudden tubular expansion at various hematocrits in steady and pulsatile flow. The adhesion density exhibited a peak within the vortex and just downstream of the reattachment point, which is also a stagnation point. The peaks flattened out with increasing Reynolds number in steady flow and also in pulsatile flow. Platelet adhesion increased markedly with increasing hematocrit. The localization of…adhesion peaks was explained by curvature of the streamlines carrying platelets to the wall on either side of the reattachment point. The relevance of these results to the circulation is that stagnation points are found in regions of disturbed flow at various sites in the arterial and venous circulations. This was shown in experiments using a technique whereby flow was visualized in isolated transparent natural blood vessels prepared from dogs and humans postmortem. In dog saphenous vein bileaflet valves, there was a large primary spiral vortex as well as a smaller secondary vortex, the latter acting as a trap and generator of thrombi. Recirculation zones also existed in the dog aorta at T-junctions of the celiac, cranial mesenteric and renal arteries. Finally, in the human carotid bifurcation, a large standing recirculation zone consisting of spiral secondary flows formed in the carotid sinus at physiological flow conditions. In all these arterial flows there are streamlines impinging radially on the vessel wall which increase the local flux of platelets and plasma proteins and lipids and may lead to the genesis of thrombosis and atherosclerosis.
Show more
Abstract: A fine structure of blood flow through a curved vessel with an aneurysm was studied in in vitro experiments in relation to rheological factors of arterial diseases such as arteriosclerosis or thrombosis. On the basis of the in vivo data related to cerebral circulation, red blood cell suspension was flowed through curved vessel models with an asymmetrical aneurysm. Flow visualization was made with a microscope 16 mm cinecamera-TV monitor system, and the velocity profile was measured using the laser Doppler velocimeter. Vortices induced in aneurysm influenced flow structure and velocity at the presence of the secondary flow due…to the vessel curvature. This suggests strongly that blood flow in curved arteries with an aneurysm must be understood under the influence of the secondary flow.
Show more
Abstract: Vascular endothelial cells subjected to fluid shear stress change their shape from polygonal to ellipsoidal and become uniformly oriented with the flow. In order to study the mechanisms of this response, we have measured the relaxation of bovine aortic endothelial cells that were grown on glass coverslips and exposed to fluid shear stress for 72 hours. An image analysis system was developed to quantify the cell shape relaxation that occurs following the cessation of shear stress. This method provides two different quantitative measures of relaxation: the loss of elongated shape by the cells and the change in cell direction with…time. After equilibration to a fluid shear stress level of 8 dynes/cm2 , cells immersed in static medium relax their shape in about 20 hours. After 72 hours in this static condition, the cell elongation is comparable to that of unstressed control cells but vestiges remain of the original orientation in the flow direction. This relaxation process contributes to our understanding of the response of vascular endothelium to fluid shear stress.
Show more
Abstract: The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125 I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible.…The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. with the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters ⩾ 15 nm was found to be severely restricted at transmural pressure ⩽ 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.
Show more
Abstract: The possibility of fluid flux within the thickened subendothelial intima is considered. Both the media and the endothelium were already shown to be major hydraulic barriers. It is hypothesized that if the hydraulic conductivity of the inbetween layer of the subendothelial intima is considerably higher, then fluid flux in the downstream (axial) direction is likely to occur within the intima as a result of the luminal blood pressure wave. Macromolecular species (as lipoproteins) would then be transported axially by the fluid. This convective transport may give rise to the formation of early atheromas. The proposed mechanism is in accord with…several clinical and experimental observations.
Show more
Abstract: Experiments with glass models of arterial branchings and bends, perfused with bovine platelet rich plasma (PRP), revealed platelet deposition being strongly dependent on fluid dynamic factors. Predilection sites of platelet deposits are characterized by flow vectors directed against the wall, so-called stagnation point flow. Thus collision of suspended particles with the wall, an absolute prerequisite for adhesion of platelets to surfaces even as thrombogenic as glass, appears mediated by convective forces. The extent of platelet deposition is correlated to the magnitude of flow components normal to the surface as well as to the state of biological activation of the platelets.…The latter could be effective by an increase in hydrodynamically effective volume, invariably associated with the platelet shape change reaction to biochemical stimulants like ADP. The effect of altered rheological properties of platelets upon their deposition and of mechanical properties of surfaces was examined in a stagnation point flow chamber. Roughnesses in the order of 5 µm, probably by creating local flow disturbances, significantly enhance platelet adhesion, as compared to a smooth surface of identical chemical composition.
Show more
Keywords: platelet adhesion, stagnation point, atherogenesis, platelet rheology, shape change
DOI: 10.3233/BIR-1984-21422
Citation: Biorheology,
vol. 21, no. 4, pp. 649-659, 1984