Bio-Medical Materials and Engineering - Volume 24, issue 6
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: While the abdominal adipose tissue has been identified as an important pathomarker for the cardiometabolic syndrome in adults, the relationships between the cardiometabolic risk factors and abdominal adipose morphology or physical performance levels have not been examined in children with obesity. Therefore, the specific aim of this study was to investigate the relationships between risk factors (BMI and physical activity levels and abdominal fat layers including subcutaneous, intra-abdominal preperitoneal and mesenteric fat thickness in children with obesity. 30 children with obesity (mean±SD = 10.0±4.5 yrs; 9 girls; BMI > 20) underwent physical performance (curl-ups, sit and reach, push-ups, and a…400-m run), ultrasound measurement of thickness of fat composition of the abdomen, blood pressure, oxygen consumption. Pearson correlation analysis showed significant correlations, ranging from -0.523- 0.898 between the intra-abdominal adipose tissue thickness, cardiometabolic risk factors (BMI, blood pressure, heart rate), and the curl-up physical performance test. In conclusion, the present study provides a compelling evidence that the intra-abdominal adipose tissue morphological characteristics were associated with BMI, physical performance, and most importantly cardiometabolic risk factors (blood pressure and heart rate), which eventually contribute to the development of cardiometabolic syndrome in adulthood.
Show more
Abstract: Ultrasound elastography has been widely applied in clinical diagnosis. To produce high-quality elastograms, displacement estimation is important to generate ne displacement map from the original ratio-frequency signals. Traditional displacement estimation methods are based on the local information of signals pair, such as cross-correlation method, phase zero estimation. However, the tissue movement is nonlocal during realistic elasticity process due to the compression coming from the surface. Recently, regularized cost functions have been broadly used in ultrasound elastography. In this paper, we tested the using of analytic minimization of adaptive regularized cost function, a combination of different regularized cost functions, to correct…the displacement estimation calculated by cross-correlation method directly or by lateral displacement guidance. We have demonstrated that the proposed method exhibit obvious advantages in terms of imaging quality with higher levels of elastographic signal-to-noise ratio and elastographic contrast-to-noise ratio in the simulation and phantom experiments respectively.
Show more
Abstract: Backscatter and attenuation parameters are not easily measured in clinical applications due to tissue inhomogeneity in the region of interest (ROI). A least squares method(LSM) that fits the echo signal power spectra from a ROI to a 3-parameter tissue model was used to get attenuation coefficient imaging in fatty liver. Since fat's attenuation value is higher than normal liver parenchyma, a reasonable threshold was chosen to evaluate the fatty proportion in fatty liver. Experimental results using clinical data of fatty liver illustrate that the least squares method can get accurate attenuation estimates. It is proved that the attenuation values have…a positive correlation with the fatty proportion, which can be used to evaluate the syndrome of fatty liver.
Show more
Keywords: Attenuation imaging, least squares method, fatty liver, quantitative ultrasound
Abstract: Currently, placental maturity staging is mainly based on subjective observation of the physician. To address this issue, a new method is proposed for automatic staging of placental maturity based on B-mode ultrasound images. Due to small variations in the placental images, dense descriptor is utilized in place of the sparse descriptor to boost performance. Dense sampled DAISY descriptor is investigated for the demonstrated scale and translation invariant properties. Moreover, the extracted dense features are encoded by vector locally aggregated descriptor (VLAD) for performance boosting. The experimental results demonstrate an accuracy of 0.874, a sensitivity of 0.996 and a specificity of…0.874 for placental maturity staging. The experimental results also show that the dense features outperform the sparse features.
Show more
Abstract: Blood-Brain Barrier (BBB) can be opened locally, noninvasively and reversibly by low frequency focused ultra-sound (FUS) in the presence of microbubbles. In this study, Evans blue (EB) dye extravasation across BBB was enhanced by 1 MHz FUS at acoustic pressure of 0.35MPa in the presence of microbubbles at clinically comparable dosage. The spatial distribution of EB extravasation was visualized using fluorescence imaging method. The center region of BBB disruption area showed more enhanced fluorescence signal than the surrounding region in general. However, EB dye deposition was heterogeneous in the center region. The findings in this study indicated potential use of…fluorescence imaging to evaluate large molecules delivery across BBB.
Show more
Abstract: One of the major problems for computer-aided pulmonary nodule detection in chest radiographs is that a high falsepositive (FP) rate exists. In an effort to overcome this problem, a new method based on the MTANN (Massive Training Artificial Neural Network) is proposed in this paper. An MTANN comprises a multi-layer neural network where a linear function rather than a sigmoid function is used as its activity function in the output layer. In this work, a mixture of multiple MTANNs were employed rather than only a single MTANN. 50 MTANNs for 50 different types of FPs were prepared firstly. Then, several…effective MTANNs that had higher performances were selected to construct the MTANNs mixture. Finally, the outputs of the multiple MTANNs were combined with a mixing neural network to reduce various different types of FPs. The performance of this MTANNs mixture in FPs reduction is validated on three different versions of commercial CAD software with a validation database consisting of 52 chest radiographs. Experimental results demonstrate that the proposed MTANN approach is useful in cutting down FPs in different CAD software for detecting pulmonary nodules in chest radiographs.
Show more
Keywords: False Positive, cutting down, Mixture of MTANNs, Commercial CAD
Abstract: To address the lack of 3D space information in the digital radiography of a patient femur, a pose estimation method based on 2D–3D rigid registration is proposed in this study. The method uses two digital radiography images to realize the preoperative 3D visualization of a fractured femur. Compared with the pure Digital Radiography or Computed Tomography imaging diagnostic methods, the proposed method has the advantages of low cost, high precision, and minimal harmful radiation. First, stable matching point pairs in the frontal and lateral images of the patient femur and the universal femur are obtained by using the Scale Invariant…Feature Transform method. Then, the 3D pose estimation registration parameters of the femur are calculated by using the Iterative Closest Point (ICP) algorithm. Finally, based on the deviation between the six degrees freedom parameter calculated by the proposed method, preset posture parameters are calculated to evaluate registration accuracy. After registration, the rotation error is less than l.5°, and the translation error is less than 1.2 mm, which indicate that the proposed method has high precision and robustness. The proposed method provides 3D image information for effective preoperative orthopedic diagnosis and surgery planning.
Show more
Abstract: Magnetic detection electrical impedance tomography (MDEIT) is an imaging modality that aims to reconstruct the cross-sectional conductivity distribution of a volume from the magnetic flux density surrounding an object. The MDEIT inverse problem is inherently ill-posed, necessitating the use of regularization. The most commonly used L2 norm regularizations generate the minimum energy solution, which blurs the sharp variations of the reconstructed image. Consequently, this paper presents the total variation (TV) regularization to preserve discontinuities and piecewise constancy of the MDEIT reconstructed image. The primal dual-interior point method (PD-IPM) is employed for minimizing the TV penalty in this paper. The…proposed method is validated by MDEIT simulated data. In comparison with the performance of L2 norm regularization, the results show that TV regularized algorithm produces sharper images and has better robustness to noise. The TV regularized algorithm preserves local smoothness and piecewise constancy, leading to improvements in the localization of the reconstructed conductivity images in MDEIT.
Show more
Keywords: Magnetic detection electrical impedance tomography, inverse problem, regularization, total variation, primal du- al-interior point method
Abstract: A generalized relative quality (RQ) assessment scheme is proposed here based on the Bayesian inference theory, which is reasonable to make use of full reference (FR) algorithms when the evaluation of the quality of homogeneous medical images is required. Each FR algorithm is taken as a kernel to represent the level of quality. Although, various kernels generate different order of magnitude, a normalization process can rationalize the quality index within 0 and 1, where 1 represent the highest quality and 0 represents the lowest quality. To validate the performance of the proposed scheme, a series of reconstructed susceptibility weighted imaging…images are collected, where each image has its subjective scale. Both experimental results and a ROC analysis show that the RQ obtained from the proposed scheme is consistent with subjective evaluation.
Show more
Abstract: Sleep apnea is often diagnosed using an overnight sleep test called a polysomnography (PSG). Unfortunately, though it is the gold standard of sleep disorder diagnosis, a PSG is time consuming, inconvenient, and expensive. Many researchers have tried to ameliorate this problem by developing other reliable methods, such as using electrocardiography (ECG) as an observed signal source. Respiratory rate interval, ECG-derived respiration, and heart rate variability analysis have been studied recently as a means of detecting apnea events using ECG during normal sleep, but these methods have performance weaknesses. Thus, the aim of this study is to classify the subject into…normal- or apnea-subject based on their single-channel ECG measurement in regular sleep. In this proposed study, ECG is decomposed into five levels using wavelet decomposition for the initial processing to determine the detail coefficients (D3–D5) of the signal. Approximately 15 features were extracted from every minute of ECG. Principal component analysis and a support vector machine are used for feature dimension reduction and classification, respectively. According to classification that been done from a data set consisting of thirty-five patients, the proposed minute-to-minute classifier specificity, sensitivity, and subject-based classification accuracy are 95.20%, 92.65%, and 94.3%, respectively. Furthermore, the proposed system can be used as a basis for future development of sleep apnea screening tools.
Show more
Keywords: Apnea, wavelet decomposition, principal component analysis, support vector machine, electrocardiogram