Automatic staging of placental maturity based on dense descriptor
Abstract
Currently, placental maturity staging is mainly based on subjective observation of the physician. To address this issue, a new method is proposed for automatic staging of placental maturity based on B-mode ultrasound images. Due to small variations in the placental images, dense descriptor is utilized in place of the sparse descriptor to boost performance. Dense sampled DAISY descriptor is investigated for the demonstrated scale and translation invariant properties. Moreover, the extracted dense features are encoded by vector locally aggregated descriptor (VLAD) for performance boosting. The experimental results demonstrate an accuracy of 0.874, a sensitivity of 0.996 and a specificity of 0.874 for placental maturity staging. The experimental results also show that the dense features outperform the sparse features.