Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mao, Xiang | Wang, Lingqing | Chen, Changgong | Tao, Luyuan | Ren, Shijia | Zhang, Li; *
Affiliations: Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
Correspondence: [*] Corresponding author: Li Zhang, Department of Cardiology, The First People’s Hospital of Taizhou City, No.218 Hengjie Road, Huangyan District, Taizhou City, Zhejiang Province, China. Tel.: +86 57684230178; E-mail: Zhanglizhushanping@163.com.
Abstract: BACKGROUND:Circular RNA circ_0124644 has crucial regulation in the progression of coronary artery diseases, including atherosclerosis (AS). The aim of this study was to explore the regulatory mechanism of circ_0124644 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury in human umbilical vein endothelial cells (HUVECs). METHODS:Cell viability and proliferation were assessed using cell counting kit-8 (CCK-8) assay and EdU assay. The apoptosis detection was performed by flow cytometry. Angiogenesis was evaluated through tube formation assay. The protein analysis was conducted via western blot. Inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The expression determination of circ_0124644, microRNA-370-3p (miR-370-3p) and forkhead box protein O4 (FOXO4) was performed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to analyze the interaction between targets. RESULTS:Treatment of ox-LDL resulted in the inhibition of cell viability, proliferation and angiogenesis but the promotion of apoptosis and inflammation in HUVECs. These ox-LDL-induced cell damages were alleviated after the downregulation of circ_0124644. Circ_0124644 interacted with miR-370-3p, and the regulatory role of circ_0124644 was associated with the sponge function of miR-370-3p. Additionally, miR-370-3p targeted FOXO4 and circ_0124644 increased the expression of FOXO4 through acting as a sponge of miR-370-3p. Overexpression of miR-370-3p protected from ox-LDL-induced injury via the downregulation of FOXO4. CONCLUSION:All results revealed that circ_0124644 accelerated endothelial injury in ox-LDL-treated HUVECs by mediating miR-370-3p-related FOXO4 expression.
Keywords: Circ_0124644, miR-370-3p, FOXO4, atherosclerosis, ox-LDL
DOI: 10.3233/CH-211375
Journal: Clinical Hemorheology and Microcirculation, vol. 81, no. 2, pp. 135-147, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl